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3 a / $ L  ABSTRACT a 

cu 
I w A technique i s  presented f o r  the numerical evaluation of the integrals 

occurring in  the Rydberg-Klein-Rees method of calculating 

curves. 

INTRODUCTION 

The potential-energy curves fo r  the bound states of diatomic molecules 

can be obtained from spectroscopic constants by using the Rydberg-Klein 

Rees Klein2 expressed the turning points of motion r and 

rmin i n  terms of two auxiliary functions f and .g: - 
max 

r = ( f 2  + f/g)l/2 + f max 

r = ( f 2  + f/g)l/2 - f 
min 

Both of the f’unctions f and g depend parametheally on the potential  

energy U and an additional parameter K = J(J + l)n2/2p where J i s  

the rotational quantum number and p i s  the reduced mass. The functions 

f and g are  defined as 

A’ 
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(2) 
2.Jr(2d [U - E(I,K)I 

Here E(  I, K)  represents the vibrat  ional-rat at ional energy lmels, and 

I qnals  h(v + 1/2) with v representing the vibrational quantum number. 

From spectroscopic data the energy levels are generally expressfble i n  

the form 

where Yzm are the usual spectroscopic constants. The upper l imits  of 

integration i n  (1) a d  (2) are  obtained *am E(I*,K) - u = 0. 

Rees3 maluated the  integrals i n  (1) and (2) analytically for the 

special  cases w h e r e  E(I,K) was either quadratic or  cubic i n  I. ’RE 

results i n  the cubic case were not i n  a very convenient form f o r  comput- 

ation. The results i n  the quadratic case, however, have been used a s  the 

basis  f o r  rather extensive calculations by Vanderslice and c o m r k e r ~ ~ ~  

and others6J7. Molecules, whose data could not be adequately represented 

Over the entire range by a quadratic, were t reated by piecewise fitting of 

quadratics t o  the energy levels. AB pointed ouk by Weiseman, Vandemlice, 

and Battino 8 this piecewise f i t t i n g  can lead t o  errors. 

The d i f f icu l ty  i n  the  numerical integration of (1) and (2) is caused 

by the fact  that the denominator of the integrands has a zero a t  the upper 

l i m i t  of integration. Jarmain c&xmrvented khis problem i n  aniapproxi- 9 

I 



. . 

- 3 -  

mate manner by f i t t i n g  [U - E(I,K)I1/’ t o  an expression of t he  form 

c ( ~ ’  - 11-4 me constarrts c ami a were evaluated by using t w o  points 

very close t o  t h e  upper l imit  of integration. 

fitted t o  a quadratic i n  (I’ - I). 
l y t i c a l l y  integrated t o  evaluate the  contributions t o  f and g from 

regions close .to E’ More recently, Weissman, Vanderslice, and 

Battino8 introdnced a new integration variable x = [U - E(I,K)I1I2 

order t o  eliminate the  singnlarity from the integrands. Although cor- 

rect, this procedure produces some unnecessary numerical inconvenience 

since the integrands a re  available as expressions i n  

integration variable x. Thus, i n  numerical evaluation of t h e  integrals 

one cannot uee a rb i t r a r i l y  selected increments of 

select  increments of I and calculate increments of x as  

Similarly, &/aK W&E 

These approximations were then ana- 

in 

I and not the 

x but rather mut 

Ax = [U - E ( I  + AI,K)]1/2 - IU - E(I,K)]1/2 

The technique that w i l l  be described here does not require the  f i t -  

t ing of t h e  integrand near the upper llmit, and further, it essentially 

re ta ins  the original integration variable. It is based on the  fact  that 

the singularities in  the  integrands o f  f and g can be easi ly  removed 

by an integration by parts. 

AEPEEOIA!L% ME!EIOD FOR IKJMEXICAL EVALTJ..ION 

The quantity U - E that appeam i n  the  integrands of f and g is 

a polynomial of order p i n  the  variable I with coefficients tha t  de- 

pend on K, Introducing the  natations x = v + 1/2 and K = J(J + l), 
we have in dimensionless form 
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P 

where Eo 

coefficients i n  t h e  polynomial P have t h e  expl ic i t  form 

i s  a constant with the  dimensions of energy and where t h e  

m=O 

I n  t h i s  notation the  upper l i m i t  of integration 1'. i n  (1) and ( 2 )  

corresponds t o  h x l ( K )  where xl(K) is the  smallest, real, posit ive 

root of P(x;K). 

If t h e  existence of t h e  improper in tegra l  f i s  assumed, then (1) 

implies that t h e  polynomial P(x;K) has a zero of order one a t  X i ( K ) .  

If KO is  a par t icular  value of 

z = x/xl(Ko), and t h e  polynomial 

K, then we can make a change i n  scale 

P can be writ ten as 

P 

where A2 ( K )  = x$K& ( K )  and where R(z; K )  is  a polynomial i n  z 

order p - 1. If K i s  chosen equal t o  KO, then (4 )  takes on t h e  

simple form 

of 

P 

where 3he subscript has been dropped from KO fo r  convenience, and where 

l i k e  powers of z i n  (5) establishes t h e  relationship between B2 and 
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2 An@) 2 = 0,1, . . ., p - 2 j n=O 

-Ap(K) 2 = p - 1  
P 

A2 ( K )  = 0. Combining t h i s  

2 = 0  

1 B 2 ( 4  = 

Also from (5) fo r  z = 1 one can obtain 

with ( 6 )  f i na l ly  gives the  result 

j = 2+1 

The numerator of t he  integrand of g is  essent ia l ly  aP/aK. This 

p a r t i a l  derivative i s  most conveniently evaluated by using the  first 

equality in  (4) .  After t he  differentiation is performed, K is  again 

chosen t o  be equal t o  KO. This gives, after dropping the  subscript on 

0' 
K 

where 

The integrals for  f and g can be written in  dimensionless form 

by using the  Bohr radius a. as a un i t  of length and = 3 2 2  /2pa0. 

Also, making a change i n  scale t o  the new variable z and considering 

the  particular value K that is equal t o  KO resul t  i n  
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where the subscript on 

Substituting (5) for 

KO has again been deleted f o r  convenience. 

P ( z ; K )  i n  (9) and (10) and performing an integra- 

t i on  by par ts  give 

In (11) and (12)  we have achieved the objective of removing the singu- 

l a r i t y  of the integrands a t  the  upper l i m i t .  For t he  important case 

K = 0, the polynomial coefficients required t o  evaluate the integrands 

of (ll) and (12) have t h e  relat ively simple forms 

P 

J n = 0,1, . . ., p 

No d i f f i cu l t i e s  were encountered i n  the numerical application of (ll), 

(12), and (13) t o  the calculation of potential-energy curves f o r  several 

diatomic molecules by using standard integration techniques. In  fact, 
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the results of single and double precision calculations f o r  the ground 

state of H agreed to at least  seven figures when using the spectro- 

scopic constants of Weissman, Vanderslice, and Battino8. 
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